Tutorial 5Advanced Graph Theory

August 19, 2013

1. Count the number of spanning trees in the following three graphs using the recurrence relation learned:

Figure: Graph 1

Figure: Graphs 2 and 3

- 2. Prove that, every n-vertex simple graph with no (r+1)-clique has at most $(1-\frac{1}{r})\frac{n^2}{2}$ edges.
- 3. The Turan graph $T_{n,r}$ is the complete r-partite graph with b partite sets of size (a+1) and (r-b) partite sets of size a, where $a = \lfloor \frac{n}{r} \rfloor$ and b = n ra. Prove that,

3.1
$$e(T_{n,r}) = (1 - \frac{1}{r})\frac{n^2}{2} - b\frac{(r-b)}{2r}$$

3.2 $e(T_{n,r}) = {r \choose 2} + (n-r)(r-1) + e(T_{n-r,r})$

4. Let S(m, r) denote the number of partitions of an m-element set into r non-empty subsets. In terms of these numbers, count the number of trees with the vertex set $\{v_1, ..., v_n\}$ that have exactly k leaves. [Rényi [1959]]